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ABSTRACT
Cloudmark’s collaborative approach to fi ghting spam—with its additional attribute of “reputation” 
added to a community of real users who identify, report, and corroborate suspect messages in real 
time—has proven more effective and faster than traditional blocking or fi ltering methods. At the 
core of the Cloudmark Global Threat Network is the Trust Evaluation System. The Trust Evaluation 
System ensures the “reputation” of reporters by tracking how often the larger recipient community 
agrees with their assessment of a message. In addition, Cloudmark uses an automated system of 
highly-profi cient, fi ngerprinting algorithms. Advanced Message Fingerprinting maintains the privacy 
of the content and reduce the amount of data to be analyzed. Once a message fi ngerprint is cata-
loged as spam, all future messages matching that fi ngerprint are automatically fi ltered. Because a 
reputation-based collaborative system does not draw blanket conclusions about terms, hosts, or 
people, it has proven to increase accuracy, particularly as it relates to false positives and critical 
false positives, while simultaneously decreasing administration costs.

INTRODUCTION
Spam is everywhere. Not only is it an annoyance, it erodes the very productivity gains brought about 
by the advent of information technology. Workers spending hours plowing through email everyday 
have to contend with a signifi cant amount of illegitimate email. Although automated spam fi lters 
have dramatically reduced spam, the amount of time and training required to use these fi lters often 
equals or exceeds the time required to simply delete unfi ltered spam.

Considering that spam essentially consists of a single message seen by a large number of indi-
viduals, there is no reason why the training load associated with an automated spam fi lter can’t be 
distributed across a large community of individuals who all receive the same unwanted messages. 
In this scenario, a self-organizing community collectively classifi es new messages as “spam” or “not 
spam.” 

The collaborative decision making of the community not only reduces the training cost and learning 
curve for individuals and the administrative costs for companies, it also reduces the cost of accu-
racy, such as that associated with misclassifi cation of a message. For our discussion, misclassifi ca-
tion of messages fall into three categories:

1) Misclassifi cation of legitimate email as spam—termed a “false positive”
2) Misclassifi cation of legitimate, and business-critical, email as spam—termed a “critical false posi-

tive”
3) Misclassifi cation of spam as legitimate email—termed a “false negative”

Of potential misclassifi cation, false criticals and false positives are of greatest concern. False posi-
tives and critical false positives have a more immediate and signifi cant cost to organizations, while 
false negatives erode overall productivity. (Coincidentally, in our research of anti-spam solutions, 
we’ve noted that false positives and critical false positives are the most underreported of all spam 
misclassifi cations.) Therefore, if a community— by properly training a spam fi lter—reduces the false 
positive and critical false positive rate, the cost incurred to the sender of a legitimate message mis-
classifi ed as spam is reduced, as well as the cost incurred to the recipient who needs the message.

Reducing training and accuracy costs, particularly accuracy as it pertains to false positives, is the 
primary motivation for creating collaborative spam fi ltering architectures, such as Vipul’s RazorTM 5 

and its progeny. These systems, described below, enable users to identify and submit fi ngerprints of 
messages. When the fi ngerprinted messages are substantiated as spam by a community of users,
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they are placed in a catalog of known spam messages.

THE FUNDAMENTALS OF CLOUDMARK TECHNOLOGY
The primary author’s involvement with spam began in 1996 when spam started trickling in through 
his 300-baud modem as a result of USENET posts. At the time, he was researching anonymous re-
mailers7 and onion routing8, and he wanted to consider anti-spam in a broader context that included 
messaging systems where the sender was anonymous and the network topology was unknown. The 
fundamental idea that met these design criteria was to provide a way for the fi rst few recipients to 
identify a message as spam, and then to have an automated way of informing the rest of the user 
community that the message is spam so the message could be fi ltered out before others read it. In 
other words, collaborative human intelligence “identifi es” a message as spam and an automated 
technology verifi es and prevents its proliferation.

The fi rst prototype of this system, dubbed Vipul’s Razor, was released as an Open Source project 
in 1998. In 2001, along with a major update to Razor (Razor2), Vipul co-founded a company called 
Cloudmark to work on messaging security technology in a dedicated setting. Today, the collabora-
tive classifi er that underlies Razor2, and all of Cloudmark’s products, is known as the Cloudmark 
Global Threat Network service. The service operates at a massive scale—fi ltering spam globally for 
some 180 million people. The goal of the service is to accurately  determine if a message is spam or 
legitimate email based on the fi rst few reports so that only a few reporters are necessary to train the 
classifi er for a new spam attack. At the core is a reputation metric analyzer that ensures the integ-
rity of user-submitted feedback by modeling historical consensus and disagreement in the recipient 
community. This automated and real-time approach signifi cantly reduces the individual training and 
corporate administrative cost. 

RELATED DIRECTIONS
The alarming increase of spam traffi c in recent years has fostered considerable research and 
development of anti-spam technologies. Many novel methods have been discovered, evaluated, 
and deployed. Some of the more popular approaches, described below, are address whitelisting, IP 
blacklisting, and Bayesian classifi ers.

Address Whitelisting
A simplistic, yet popular, classifi er known as “address whitelisting” permits delivery of mail only from 
people known to, and approved by, the recipient. The premise is that exclusion of spammers from 
the “allowed sender” list keeps spam out of the mailbox. This classifi er is very easy to implement 
and works well for recipients who communicate only with a well-defi ned and static set of correspon-
dents. However, its performance is suboptimal in the general case, where recipients must continu-
ally update and train their own version of the classifi er as their correspondence network expands. 
The accuracy cost is also high because address-based classifi cation is susceptible to address 
forgery, and a well defi ned allow list hampers fi rst-contact communications. Many of the shortcom-
ings associated with address whitelisting can be alleviated with sender authentication schemes and 
reputation-based training, as we discuss later in this paper.

IP Blacklisting
Another popular method for stopping spam is blocking all incoming traffi c from mail servers that 
are known to send spam or that have the potential to send spam due to misconfi guration. Servers 
that wish to reject mail from known spam mail servers can fetch a list of known spam-generating 
mailservers by IP address (commonly referred to as RBLs, or Real-time Blackhole Lists) and block 
all inbound connections from these systems. While this is a powerful tool for stopping the most abu-
sive mail servers on the internet, blocking every incoming message from a specifi c mail server, even 
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one predominately used for spam, may increase the false positive and critical false positive rate of 
the spam fi lter. Without a method for rapidly providing feedback about servers on the block lists that 
are likely also generating legitimate traffi c, organizations striving for zero or near-zero false posi-
tives are forced to look for technologies that provide greater granularity regarding the disposition of 
a message. 

Bayesian Classifi ers
Statistical text classifi cation systems, like Naive Bayesian (NB) classifi ers6, classify based on the 
semantic similarity of incoming mail to a corpus of prior messages. NB classifi ers tokenize mail con-
tent into words and phrases (or other linguistic units) and register the probability of the appearance 
of various words and phrases in spam and legitimate messages. The learned set of linguistic units 
and their corresponding probabilities constitute the “hypothesis” used to classify incoming mail. 
While statistical text classifi ers must be trained incrementally by the recipient, the training events 
are rare, compared to the frequency of incoming mail. Most implementations come with a built-in hy-
pothesis that serves as a starting point to offset the training requirements of the tool. Once trained, 
statistical text classifi ers are quite accurate at identifying legitimate communications and reasonably 
good at identifying spam. They are known to perform best in single-user environments where the 
training corpus accurately refl ects specifi c user preferences. Most real-world deployments of sta-
tistical text classifi cation are augmented with orthogonal classifi ers, such as blacklisting, to derive 
acceptable spam detection performance.

ARCHITECTURE
The Cloudmark Global Threat Network service is a community-based, rather than an individual-
based, fi lter training system. It does not rely upon any one semantic analysis scheme; rather, it uses 
a large set of orthogonal fi ngerprinting schemes that are trained by the community.

The service consists of four important architectural components: Agents, Nomination servers, Cata-
log servers, and a reputation system known as the Trust Evaluation System. The Agent software 
suite comprises a variety of software packages used by email recipients to report on messages, 
such as “Message is spam” or “Message is not spam”. This feedback is routed to the Nomination 
servers, and small fi ngerprints are generated on the message. The fi ngerprint size is on the order 
of 14 to 20 bytes. Not only does fi ngerprinting a message, rather than transmitting its entire con-
tent, protect the privacy of the email recipient, it also dramatically reduces the cost associated with 
transmitting, storing, and processing feedback. We discuss spam fi ngerprinting in more detail later 
in this paper. 

The submitted feedback is passed to the Nomination servers, which collect all fi ngerprints nomi-
nated by the recipients as either potentially new spam or as false positives. If all users were equally 
and consistently capable of determining the disposition of a message, and a single user could 
nominate a fi ngerprint as “spam” or “not spam,” then the fi ngerprint would be redistributed to the 
community. The Cloudmark Global Threat Network service, however, requires submitted feedback 
to be corroborated by multiple, trusted members of the community. The logic that determines the 
community’s faith in the validity of a fi ngerprint is embodied in the Trust Evaluation System. It alone 
determines which new reports are valid or invalid. An overview of how the Trust Evaluation System 
works is presented in a following section.

Once the Trust Evaluation System determines that a fi ngerprint is “spammy,” the fi ngerprint is 
added to the Catalog server. All messages received by a user are fi ngerprinted, and the fi ngerprints 
queried against the Catalog server. If the queried fi ngerprint exists in the Catalog server, the agent 
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fi lters the message as spam. If the fi ngerprint is not in the Catalog server, and the recipient feels 
that the message is spam, then the recipient submits a fi ngerprint to the Nomination server and the 
process begins again. 

An agent residing on a user’s desktop computes a fi ngerprint of a new email and submits this fi nger-
print (1) to the Spam Fingerprint Catalog server. If the Catalog server has the fi ngerprint in its data-
base, the server tells the agent (2) that the message has been fl agged by the community as spam. 
If the fi ngerprint is not in the Catalog server, and the recipient feels that the message is spam, the 
recipient instructs the agent to transmit the fi ngerprint (3) to the Nomination server, which in turn, 
inserts the fi ngerprint into the Nomination database (4). The Trust Evaluation System continually 
watches (5) the Nomination database to see if there are any new fi ngerprints –that have been sub-
mitted by multiple, trusted email recipients. If enough trusted recipients submit the same fi ngerprint, 
the fi ngerprint is promoted to the Catalog server, and the process continues.

Figure 1:  The process fl ow of the Cloudmark Global Threat Network service. 

Trust Evaluation System
The Trust Evaluation System ES is the reputation metric, or trust system, of GTN service that evalu-
ates every new piece of feedback submitted to the Nomination servers. The primary function of TeS 
is to assign a “confi dence” to fi ngerprints—a value between Cmn (legitimate) and Cmx (spam), based 
on the “reputation” or “trust level” of the individual reporting the fi ngerprint. The trust level, t, is a 
fi nite numeric value attached to every community reporter. The value t is, in turn, computed from the 
corroborated historical confi dence of the fi ngerprints nominated by the reporter. The circular assign-
ment effectively turns the classifi er into a stable closed-loop control system.
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Figure 2:  The process fl ow of the Trust Evaluation System.

The heart of the Cloudmark Global Threat Network service is the Trust Evaluation System. This is 
the component that determines both the confi dence the community has in the disposition of a fi n-
gerprint and the trust that the system places in the decisions made by members of the community. 
In a continuous process, members of the community receive new spam (1) and report their feelings 
(“spam” or “not spam”)  about the message to the Nomination server, which in turn reports it to the 
sytstem (2). Based upon the trust associated with each individual reporter, it assigns confi dence to 
the fi ngerprint (3) and reports it to the GTN service for distribution to the community (4). The system  
then reevaluates the community trust values to determine who should gain and lose trust as a result 
of their individual assessments of the message.

Just as in the real world, trust is earned slowly and is diffi cult to attain. New recipients start with 
a trust level of zero. In the very beginning (at the launch of the classifi er), there were only a few 
hand-picked recipients with a high trust level. As zero-valued, untrusted community members pro-
vide feedback, TES rewards reporters whose feedback agrees with those of highly-trusted, highly-
reputable members of the community. In other words, TES assigns trust points to recipients when 
their reports are corroborated by other highly trusted recipients. In practice, for every fi ngerprint that 
achieves a high confi dence meaning that the fi ngerprint was reported and corroborated by highly 
trusted recipients—TES gives one of fi rst reporters of the fi ngerprint a small trust reward.

Untrusted recipients who report often and report correctly eventually accrue enough trust rewards 
to become trusted recipients themselves. Once trusted, they implicitly begin to participate in the 
process of selecting newer trusted recipients. In this manner, TES selectively inducts a community 
of “highly-reputable,” “highly-trusted” members—reporters who routinely make decisions that are 
honored by the rest of the community. TES also penalizes recipients who disagree with the trusted 
majority. Penalties are harsher than rewards, so while gaining trust is hard, losing it is rather easy.

The second aspect of TES’s responsibility is to assign confi dence to fi ngerprints. Fingerprint confi -
dence is a function of the reporter’s trust level and the disposition (block/unblock) of their reports. 
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TES updates confi dence in real-time with every report. Once the confi dence reaches a threshold, 
known as average spam confi dence, it is promoted to Catalog servers. If a promoted fi ngerprint is 
unblocked by trusted recipients, its confi dence can drop below the average spam confi dence, which 
results in its immediate removal from the catalog servers. The real-time nature of confi dence as-
signments results in an extremely responsive system that can self correct within seconds.

In more formal terms, a given set of fi ngerprint reporters, R, who each have a trust level tr , send in 
reports that have a disposition dr , where dr = -1 if the fi ngerprint misclassifi es a legitimate message 
as spam and tr = 1 if the message is spam. After a number of fi ngerprints are collected, it is possible 
to compute a fi ngerprint confi dence using the following equation:
However, it is important to note that TeS uses a variation of the above algorithm to reduce its attack 
vulnerability.

Emergent Properties of TES
TES has several desirable, even surprising, emergent properties when deployed on a large scale. 
These properties are critical to the effectiveness of the system and typical of well-designed reputa

tion metrics. We discuss some of these properties in this section and contrast them with related
properties of other anti-spam approaches.

Responsiveness
TES’s reward selection metric prefers those recipients who report correctly and early. This means 
that over time TES can identify all such reporters whose initial reports have a high likelihood of 
being accepted as spam by the rest of the community. As the group of trusted recipients becomes 
larger, the fi rst few reports are extremely reliable predictors of a fi ngerprint’s fi nal disposition. As a 
result, GTN can respond extremely quickly to new spam attacks. 

Anti-spam methods that either require expert supervision, or that are inherently unable to train on 
individual samples, have signifi cantly longer response latencies. These systems are unable to stop 
short-lived attacks that are not already addressable by their existing fi ltering hypotheses.

Self Correction
The ability to make negative assertions (“Message is not spam”), combined with the dynamic nature 
of the confi dence assignment algorithm, permits speedy self-correction when the initial prediction 
is incompatible with the consensus view. Since confi dence and trust assignments are intertwined, 
community disagreement results in immediate correction of the confi dence of fi ngerprints, as well as 
a trust reduction for reporting the fi ngerprints as spam. This results in a historical trend toward accu-
racy because only the reporters who consistently make decisions aligned with the consensus retain 
their trusted status. From a learning perspective, the reporter’s reputation or trust values represent 
the entire history of good decisions and mistakes made by the classifi er.

Modeling Disagreement
One of things we learned almost immediately after the launch of TES was that certain fi ngerprints 
would wildly fl ip-fl op across the average spam confi dence level. These fi ngerprints usually repre-
sented newsletters and mass mailings that were considered desirable by some and undesirable 
by others. The community of trusted recipients disagreed on the disposition of these fi ngerprints 
because there was no “real” community consensus on whether or not the message was spam. By 
modeling the pattern of disagreement, we taught TES to identify this kind of disagreement and fl ag 
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such fi ngerprints as contested. When agents query contested fi ngerprints, they are informed of the 
contention status so they can classify the source emails based on out-of-band criteria, which can be 
defi ned subjectively for all recipients. 

Contention modeling is extremely important for a collaborative classifi er like the Cloudmark Global 
Threat Network service because it scopes the precision of the system. If the limitations of the classi-
fi er are known, other classifi cation methods can be invoked as required. In the Cloudmark Global 
Threat Network service, contention logic is also a catch-all defense against fi ngerprint collision. If a 
set of spam and legitimate email happen to generate the same fi ngerprint, the fi ngerprint is fl agged 
as contested, which excludes its disposition from the classifi cation decision. Historically aggregated 
contention rates in the service are an indicator of the level of disagreement in the trusted com-
munity. The level of disagreement in the service is very low, which implies that the trust model can 
successfully represent the collective wisdom of the community.

Most machine learning systems, including statistical text classifi ers like Naive Bayes, are unable to 
automatically identify contested documents. This is why statistical classifi ers tend to work better in 
single-user environments where recipient preferences are consistent over time.

Resistance to Attack
An open, user feedback-driven system like the Cloudmark Global Threat Network service is an at-
tractive attack target for spammers. There are essentially two ways of attacking the service. One 
is through a technique called hash busting, which attacks fi ngerprinting algorithms by forcing them 
to generate different fi ngerprints for each mutation of a spam message. Fingerprinting algorithms 
are designed to be resistant to hash busting, as discussed later in this paper. The second vector for 
attack is through incorrect feedback. Most commonly, attackers attempt to unblock their mailings 
before broadcasting them to the general population. However, an attacker must fi rst be considered 
trusted in order to affect the disposition of a fi ngerprint. In order to gain trust, the attacker must pro-
vide useful feedback over a long period of time, which requires blocking spam that others consider 
to be spam. In other words, spammers must behave like good recipients for an extended period of 
time to get even a single identity to be considered trusted. If they do spend the effort building up a 
trusted identity, the amount of damage they can do with one or few trusted identities is negligible be-
cause the disagreement from the majority of the trust community will result in harsh trust penalties 
for the spammer identities. As the pool of trusted users grows, it gets harder to gain trust and easier 
to lose it. Participation is proportional to the strength of attack resistance.

Expert-supervised systems are resistant to such attacks by defi nition but are unable to scale to a 
large number of experts. Similarly, statistical text classifi cation systems must go through supervised 
training to avoid corpus pollution. Supervision limits the amount of training data that can be con-
sidered. One real-world limitation, for example, is in a supervised classifi cation system’s inability to 
adequately detect “foreign language” spam—that is, spam in languages not understood by supervi-
sors. 

A Collective Defi nition of Spam
Perhaps the most passionately debated question in anti-spam circles—what constitutes spam—still 
lacks a universal answer. Even though discussions tend toward philosophy, it is an important ques-
tion to answer for creators and users of anti-spam classifi ers. Luckily for us, one of the side effects 
of the Global Threat Network service is a generative defi nition of spam. The emails that achieve a 
high confi dence are “spam” and the ones that don’t are “not spam.” The emails that get contested 
are spam for some and not others. These metrics are a direct representation of the beliefs of the 
community as to what spam is.
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Many anti-spam systems—like IP blacklists operated by a small group of otherwise extremely 
informed experts—often train their system based on personal experience, strict policies, or minority 
perspective resulting in wide-scale misclassifi cation. The cause of poor training is often limited vis-
ibility, referred to as availability bias1, and has led to many lawsuits and general distrust of anti-spam 
techniques. A community-based classifi er is resistant to such biases.

Fingerprinting and Its Impact on System Performance
The Global Threat Network service relies on advanced message fi ngerprinting algorithms for iden-
tifying messages classifi ed by the community as being spam. All of the fi ngerprinting algorithms 
employed by the service take the same general form: They are a many-to-one mapping between 
messages and the fi eld of 14 to 20 byte numbers. A good fi ngerprinting algorithm would map many 
similar messages, namely mutations of one another, to the same fi ngerprint while not mapping any 
additional messages to the fi ngerprint.

We have formalized these two properties of fi ngerprinting algorithms by creating two metrics: 
multiplicity and cross-class collision. Multiplicity encapsulates the versatility of a single fi ngerprint 
to classify mutations of a single spam species. Cross-class collision is the extent of intersection 
between fi ngerprints generated from a corpus of spam and legitimate messages. It measures the 
potential rate at which the fi ngerprint could cause false positives in the system. While the creation of 
fi ngerprinting schemes is a creative process, these metrics work as a general framework to evaluate 
the effi cacy of new fi ngerprint schemes.
These metrics were developed in-house because literature on fi ngerprint-based spam fi lters is 
sparse. This paper constitutes the fi rst time our internal fi ngerprint evaluation system has been 
publicly documented.

We begin by denoting the set of spam messages by S and the set of non-spam messages as S' .
It is well known that spammers will mutate a single message to escape naive signature schemes. 
We defi ne a mutation set as being an agreed-upon set of messages to be derived from a single 
source message, or to share a common message ancestor. We assume that mutation sets do not 
overlap.

Classifying spam perfectly into mutation classes is, for all practical purposes, an impossible task. 
However, for the evaluation of new fi ngerprinting algorithms, a reasonable approximation can be 
achieved by classifying corpora manually.

We denote a class of fi ngerprinting algorithms by ƒ . ƒc is a perfect cryptographic hash, which gener-
ates a unique value for every unique message, regardless of how small a mutation may exist be-

tween any two messages. ƒo is a fi ngerprint generated by a limited oracle, where all spam messages 
in a single mutation class generate the same fi ngerprint. ƒe is the fi ngerprinting algorithm that we 
develop. The fi ngerprinting algorithm should operate exactly like the oracle and generate a single 
fi ngerprint for all messages in the same mutation class.
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The set of fi ngerprints previously generated by system users is denoted by Fcat , which is an abstrac-
tion of the catalog server. Additionally, Scat is denoted as the set of spam messages in the catalog 
server.

On the back end, two factors drive the accuracy and the false positive rate. We know that any new 
spam that comes in is either something we have seen before, a mutation of an old spam campaign, 
or a completely new campaign. If it is an old spam campaign, then it should be in the content fi lter-
ing system. If it is a new campaign, the data feedback system will report the message fi ngerprints 
into the system, and the fi ngerprints that identify the attack will be rapidly propagated throughout the 
system and community. Regarding mutations of old campaigns, we don’t want to allow a spammer to 
apply a simple mutation, such as reformatting the message or changing a URL, to avoid a previous-
ly-generated signature. To prevent mutations of old campaigns from slipping past our system to the 
users, fi ngerprinting algorithms with high multiplicity must be employed in order to resist mutations 
of old campaigns.

A cryptographic hashing algorithm, for example, would not be an appropriate fi ngerprint because of 
its sensitivity to mutations, but would fare well when it comes to generating fi ngerprints that would 
unintentionally also apply to legitimate messages.

If a large number of messages that do not have any mutations are received by our agents, the mul-
tiplicity numbers will look artifi cially low. Therefore, we use an additional metric, known as unbiased 
multiplicity, for evaluating fi ngerprinting algorithms during the design stage. This metric quantifi es 
how close an experimental fi ngerprinting algorithm comes to generating only a single metric per 
mutation class.

A fi ngerprint with high multiplicity is capable of covering multiple mutations of the same spam from 
a single campaign. From the standpoint of the community, a high-multiplicity fi ngerprint means that 
a single spam campaign consisting of multiple mutations will be eliminated far earlier than if multiple 
fi ngerprints are required.

It is possible to generate a fi ngerprint with extremely high multiplicity, where volumes of messages 
are covered by the same fi ngerprint. The danger, however, is that a high-multiplicity fi ngerprint 
would also cover messages that are not spam, or cause collisions with messages contained in the 

legitimate class. Since TES independently protects against false positives by contesting fi ngerprints 
that cover both spam and legit messages, a high cross-collision rate renders colliding fi ngerprints 
ineffective in stopping spam.

During metric design, we quantifi ed a fi ngerprint algorithm’s risk for a high contention rate by 
examining the cross-mutation collision, or cmc rate, or the rate at which a single fi ngerprint covers 
multiple mutation classes. Note that the inverse mapping of the fi ngerprint function is a subset of the 
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message set, that is,  

The cross-mutation collision rate is really a proxy metric for the cross-class collision, or ccc rate, or 
the rate at which a legitimate message and a spam message maps to the same fi ngerprint.

In summary, a perfect fi ngerprinting algorithm will generate zero cross-class collisions and will have 
an unbiased multiplicity of 1. Currently we employ eight different fi ngerprinting algorithms, each of 
which has a method of operation that is mutually orthogonal. The generation of additional fi nger-
printing algorithms is left as an exercise to the reader.

For those readers who are familiar with Vipul’s Razor and Cloudmark systems, we would like to 
point out that the open-source Vipul’s Razor agents implement two of the six fi ngerprinting algo-
rithms in Global Threat Network service. The independence of fi ngerprinting schemes makes it 

possible to deploy versions of the service agents with differing QoS and performance characteris-
tics as required by environmental and business factors.

Overall Fitness
From a user’s standpoint, the most important metrics are the accuracy and the false positive rate, 
denoted by a and fp in the equations below. We defi ne accuracy as the percentage of spam mes-
sages sent to a user’s mailbox that are correctly classifi ed as spam without user intervention. Also, 
we defi ne the false positive rate as the number of non-spam messages that have to be unblocked by 
user feedback divided by the number of messages that are checked for their spam disposition.

In practice, the Global Threat Network allows precise quantifi cation of accuracy and training costs 
based on the cumulative number of blocks, unblocks, and checks. In fact, the GTN is one of the few 
anti-spam systems whose production performance can be actively measured by its developers in 
real time.

Sender Reputation
Several initiatives are being pursued that attempt to compute reputation of senders rather than of 
email. Both Sender Policy Framework (SPF)4 and Domain Keys Identifi ed Mail (DKIM)2 attempt 

to identify a sender by the set of email servers they use to send out mail. SPF is the more widely 
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deployed of the two, but DKIM is gaining ground. The basic idea behind the SPF scheme is to allow 
senders to publish a list of servers they use for sending mail through a DNS record. For example, 
examplesender.com can publish that they send mail from mx1.examplesender.com or mx2.example-
sender.com. Before accepting mail, the recipient mail server can then ensure that a sender claiming 
to be examplesender.com is actually coming from one of the mail servers in example sender.com’s 
DNS records. DKIM signs all outgoing messages with an asymmetric key whose public counterpart 
is published through the sender’s DNS. SPF and DKIM essentially make it very hard to forge the 
identity of the sender, making spam fi ltering based upon sender information more feasible. 

Once the sender’s identity is established with SPF or DKIM, reputation systems like TES can be 
employed to measure “the goodness of senders” over time. There are quite a few sender reputation 
projects underway3 that aim to track and compute sender reputation and use it to fi lter mail from bad 
senders. Sender reputation would also enable more robust versions of the “address whitelist” classi-
fi er described earlier.

How accurate would such classifi ers be? While we believe sender authentication is a useful and 
healthy augmentation to email, our perspective on the usefulness of sender authentication in the 
context of anti-spam differs from the prevalent optimism seen in the industry today. The problem 
with sender authentication schemes is that they do not identify individual senders. They currently 
associate identities only with a collection of senders behind a host. To be more exact, sender au-
thentication schemes identify the software and network infrastructure used by a sender to send out 
email. There are two problems with this. First, a sender’s reputation is affected by the behavior of all 
senders with whom the sender shares network resources. Second, the sender’s reputation could be 
affected by malicious code that hides on the sender network to send out spam or malicious code via 
email. The fi rst is a problem of granularity and the second is a problem of impersonation.
We contend that host-level sender authentication and reputation will be good at identifying immacu-
lately good senders, or sender collections, such as small organizations and phishing-affl icted insti-
tutions that can successfully enforce a conscientious sender policy and safeguard their networks 
from zombies. Sender authentication will also be effective at identifying the absolutely bad senders 
and networks created solely to send spam. However, networks with a large number of users, and 
networks where security can be breached by spam-spewing zombies, will end up with sullied repu-
tations. 

If we were to design a fi ngerprinting algorithm that simply used the authenticated sender host as the 
fi ngerprint, the algorithm would have a high multiplicity and also a high cross-collision rate. As we 
described above, a high cross-collision rate results in the classifi er’s inability to use the contested 
fi ngerprints—sender hosts in this case—to make fi ltration decisions. Thus, a sender host-based 
classifi er would have to rely on out-of-band methods to classify a large amount of email.

DKIM does allow for weak authentication of individual senders. The reliability of individual sender 
authentication is a function of a domain’s ability to authenticate senders within the domain. Although 
internal authentication of senders through methods such as SMTP-AUTH is not widely deployed 
today, it’s a very tractable solution.

Pushing authentication, and eventually reputation, to individual senders will alleviate the problem of 
granularity and will make for better classifi ers. It might also be possible to solve the problem of im-
personation by modeling sender patterns that differentiate zombie activity from that of the legitimate 
user.

The collaborative fi ltering system we describe does not need to establish trust for a global pool of 
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mail senders. The system we describe needs to establish a weaker form of trust that states that 
email recipients will correctly or incorrectly classify spam regardless of who they are, among a pool 
of users whose number is relatively small compared to the number of users of email worldwide.
CONCLUSION
We described the architecture and operation of the Cloudmark Global Threat Network service and 
illustrated the emergent properties of the reputation system underlying the classifi er. We also pre-
sented a framework for evaluating the effi cacy of spam fi ngerprinting algorithms. 

Finally, we also contrasted the GTN approach with other popular methods for classifying spam. The 
actual architecture and algorithms currently used in the Global Threat Network service are quite 
complex. The descriptions above have been simplifi ed to highlight the central themes. We hope that 
we have conveyed the importance of reputation-based methods in the fi ght against spam.
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