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ABSTRACT
One of the most effective techniques available for combating spam is the widespread application of 
collaborative fi ltering, where members of a community identify and vote on spam messages. A col-
laborative system is built on the, now proven, premise that individual users can, with high accuracy, 
determine the difference between spam and legitimate email.  However, it is not obvious that this 
also holds true for email-borne malware threats, whose sole indicator is often only a malicious at-
tachment to an otherwise seemingly legitimate email. We present data and analysis of our success 
in applying a collaborative fi lter, originally designed for anti-spam, to the anti-virus problem.  We 
also present our results from specifi c case studies, including an analysis of the CME-24 outbreak of 
early 2006. We show that not only is a collaborative fi lter effective for fi ltering viruses, but also that 
the community begins fi ltering the virus within minutes of its initial detection—and with an extremely 
low false positive rate.

INTRODUCTION
It is widely accepted that computer users operate in a dangerous world, where expressions like 
“rapidly evolving threats” are no longer considered sensationalism.  Computer security professionals 
have diffi culty keeping up with the latest threats, with confusion frequently arising over something as 
simple as the names of new threats.  The problem has become severe enough that the US Federal 
Government, through the contractor MITRE, has interceded and normalized the naming schema 
through the formation of the Common Malware Enumeration initiative. As domain experts struggle to 
keep pace, ordinary users are left in a world of confusion.

The security issues that home users faced over a decade ago were quite different than those faced 
today. Typically, viruses and other malicious code propagated through infected fl oppy disks. The 
transmission of viruses was slow and limited by the rate at which physical media moved.  From a 
containment perspective, the slow rate of viral transmission meant the anti-virus (AV) community 
could contain and control viruses through its standard channels of delivering software updates.

Both empirical evidence and improved analytical models of viral propagation show that viral epidem-
ics cannot be avoided solely due to low transmission rates.  As software became more complex, 
it became easier to compromise. The adoption of this extremely complex software by the general 
public, coupled with the introduction of pervasive networks has dramatically increased virus propa-
gation rates and expanded the number of possible vulnerable software targets.  An improved under-
standing of social network behavior shows that any computer virus that propagates across a human 
social network, such as email viruses, has the potential to turn into an epidemic [1].

The computer security industry has evolved considerably in response to these challenges. There 
are thousands of security products on the market, available in hundreds of form-factors, to defend 
against all manner of threats in all manner of environments. Network fi rewalls, authentication sys-
tems, encryption systems, anti-virus tools, and anti-spyware tools are almost universally deployed. 
Even with all of these available technologies, virus and malware problems persist because Internet 
security attacks spread faster than the small security teams working in operation centers can react. 

Consider spam. In conventional security terms, spam constitutes unauthorized access to an un-
authenticated service—namely, our inbox.  In practical terms, however, we all recognize that our 
mailboxes are clogged everyday with unwanted messages. Users see daily evidence—the volume 
of spam and virus-laden email—that conventional security solutions are outstripped by the rate and 
innovation of spam and viruses. Entire sub-industries, including the messaging security industry of 
which the authors are members, have developed to combat these two security threats.  
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CONVENTIONAL ANTI-VIRUS AND ANTI-SPAM METHODOLOGY
Conventional anti-virus software works on a basic principle. The software examines every fi le 
that comes into the machine and generates a unique signature for each fi le. This signature is then 
checked against a database of signatures of known viruses. Engineers isolate and analyze samples 
of computer viruses to create these signatures.  Ideally, signatures uniquely identify a virus strain 
without colliding with legitimate software. If the database is updated frequently and the signature 
is suffi ciently selective, then all viruses are fi ltered out of the system before they can do any harm; 
otherwise, critical system software may be fl agged as malicious or, conversely, virus variants may 
evade the fi lter.  An in-depth treatment of this topic can be found in Szor’s The Art of Computer 
Virus Research and Defense [2].

The anti-spam industry has settled on three major methodologies:

 Network-Layer Analysis 
 Heuristics and Machine Learning 
 Fingerprinting 

Network-Layer Analysis
Network-layer analysis encompasses IP blacklisting, mail delivery rate limiting, and several other 
techniques that depend upon traffi c analysis at the network layer alone.  IP blacklisting works by 
blocking all incoming traffi c from mail servers that are known to send spam or that have the poten-
tial to send spam due to misconfi guration.  Servers that want to reject mail from known spam mail 
servers can fetch a list of these mailservers by IP address (commonly referred to as RBLs, or Real-
time Blackhole Lists) and block all inbound connections from these systems. While this is a powerful 
tool for stopping the most abusive mail servers on the internet, blocking every incoming message 
from a specifi c mail server, even one predominately used for spam, may increase the false positive 
and critical false positive rate of the spam fi lter.  Traffi c analysis techniques also encompass email 
delivery rate limiting, where MTA connections are throttled if a single connection attempts to deliver 
a large volume of mail to a large number of users.  While it does slow down the rate at which spam 
is delivered, this technique is diffi cult to apply for large volume customers, such as enterprise users.

Heuristics and Machine Learning
Heuristic techniques are human-written rules that look for certain behavioral differences between le-
gitimate mail and spam.  For example, the increasingly large volume of image-based spam has driv-
en many anti-spam vendors to create ad-hoc rules for determining the disposition of attachments.  
Heuristics that are automatically updated and refi ned by machines based upon training sets are 
classifi ed as Machine Learning (ML) techniques.  One popular ML technique, namely Naïve Bayes-
ian classifi ers, tokenizes mail content into words and phrases (or other linguistic units) and registers 
the probability of the appearance of various words and phrases in spam and legitimate messages. 
The learned set of linguistic units and their corresponding probabilities constitute the “hypothesis” 
used to classify incoming mail. While machine learning techniques must be trained incrementally 
by the recipient, the training events are rare, compared to the frequency of incoming mail. Most 
implementations come with a built-in hypothesis that serves as a starting point to offset the train-
ing requirements of the tool. Once trained, machine learning-based systems are quite accurate at 
identifying legitimate communications and reasonably good at identifying spam. They are known 
to perform best in single-user environments where the training corpus accurately refl ects specifi c 
user preferences. Most real-world deployments of statistical text classifi cation are augmented with 
orthogonal classifi ers, such as blacklisting, to derive acceptable spam detection performance.

Fingerprinting
Fingerprinting methodologies are similar to anti-virus signatures in that the fi ngerprint uniquely iden-
tifi es strains of spam by extracted portions of the message content.  Unlike classic virus signatures, 
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fi ngerprints are automatically generated from the e-mail content.  Due to a their rapid generation and 
dissemination, fi ngerprints do not need to be as tolerant to evasion by mutation as virus signatures. 
Two methods exist for automatic spam fi ngerprint generation, bulk detection and collaborative fi lter-
ing.  Bulk detection works by automatically issuing a fi ngerprint for any content that matches certain 
traffi c characteristics, such as rapid transmission.  Collaborative fi ltration, the method employed by 
the author’s company, relies on a community of users to submit fi ngerprints identifying spam messag-
es and to issue alerts, or contest a fi ngerprint, when legitimate e-mail has been identifi ed as spam.

MOTIVATIONS FOR ANTI-SPAM AND ANTI-VIRUS TECHNOLOGIES
While viruses and spam are both unsolicited and unwanted content that arrives at our computers, 
they exist in somewhat dissimilar ecologies. We fi nd that the underlying social and economic factors 
that drive the creation of spam and viruses are fundamentally different.  As a result, the emergent 
spam and virus threats are distinct, and have been addressed distinctly by technologists.  Consider 
the following differences driving the proliferation of spam versus viruses:

 Virus writers typically target computers, while spam writers typically target minds. The goal of 
a classic computer virus is to alter the execution of software, such as causing the operating system 
to delete all the fi les on the hard drive on a given day.  The goal of spam, on the other hand, is to 
convince someone to take a specifi c action, such as buying a product, or, in the case of phishing, 
replying with bank account information. 

 Many more people can write spam than can write viruses. Virus writers are extremely com-
puter profi cient as compared to the general populace.  Virus writers discover new or detect existing 
fl aws in an operating system to propagate an attack.  Even simply altering or mutating an existing 
virus requires an understanding of computer code.  By contrast, spammers are marketers.  The skills 
required to create a spam message are the same as those needed to write an e-mail or create a 
graphic. These skills are possessed by a far larger population.

The combination of these two factors leads to a far greater number of spam mutations than virus 
mutations.  Thankfully, many more people can recognize a spam message than can recognize a 
virus. The opinion of the general population as to what messages are spam and what messages are 
not spam forms an accurate depiction of the content’s disposition, and can be used to generate an 
accurate anti-spam fi lter, as detailed below.

CLOUDMARK AUTHORITY ANTI-VIRUS: COLLABORATIVE FILTERING 
Conventional anti-virus software relies on teams of highly trained experts to extract computer virus sig-
natures from binary sources.  Anti-spam solutions that use heuristic engines rely on a similar expert team 
to create regular expressions. Alternatively, we can use the large pool of e-mail readers to differentiate 
between spam and legitimate mail, and then generate precise, orthogonal fi ngerprints that accurately iden-
tify a message and its mutations, as spam has always been relatively easy to recognize. This allows for 
the creation of a collaborative fi ltering-based, anti-spam solution—where the masses of e-mail users can 
decide, as a group, on the nature of individual messages by nominating messages as either spam or “not 
spam”. Rather than waiting on an expert to detect and extract a virus feature, as is the case with conven-
tional anti-virus, collaborative fi ltering anti-spam techniques can leverage the proverbial “Wisdom of the 
Crowd” and quickly and effi ciently fl ag what is spam and what is “not spam” and then automatically fi lters 
the messages associated with these fi ngerprints.
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CLOUDMARK AUTHORITY ANTI-VIRUS SYSTEM

Figure 1:  The process fl ow of the Cloudmark system.

An agent residing on a user’s desktop computes a fi ngerprint of a new e-mail and submits this 
fi ngerprint (1) to the Spam Fingerprint Catalog server.  If the Catalog server has the fi ngerprint in 
its database, the server tells the user (2) that the message has been fl agged by the community 
as spam.  If the fi ngerprint is not in the Catalog server, and the recipient feels that the message 
is spam, the recipient sends the fi ngerprint (3) to the Nomination server, which in turn, inserts the 
fi ngerprint into the Nomination database (4).  The Cloudmark Trust Evaluation System®, or TES, 
continually watches (5) the Nomination database to see if there are any new fi ngerprints that have 
been submitted by multiple trusted e-mail recipients.  If enough trusted recipients submit the same 
fi ngerprint, the fi ngerprint is promoted to the Catalog server, and the process continues.The system 
does not depend solely on human reporters. Honeypots are frequently added to the community and 
treated exactly the same as a high-volume human reporter.  The rapid response and wide scope of 
Cloudmark’s honeypots increases accuracy while reducing the number of responses required from 
humans.

The concepts behind Cloudmark’s collaborative fi lter, known as the Cloudmark Network Classifi er™ 
[3], are relatively simple.  Users fi rst submit a set of fi ngerprints derived from incoming e-mail. If the 
fi ngerprint is already in the catalog of malicious content, then the user is told that the e-mail is spam 
and it is moved to the user’s spam folder. If the fi ngerprint is not in the database, and the user feels 
the content is spam, then the user nominates it as such, and its associated fi ngerprint is added to a 
database for temporary storage of new fi ngerprints.  If a suffi cient number of community members 
agree that the content is spam, then fi ngerprints are moved to the spam catalog and the process 
continues.  

Community members who correctly identify spam in a timely manner are rewarded by becoming 
trusted members of the fi ltering community. Their feedback is weighted more than community mem-
bers who have a lower trust rating. Conversely, if they report incorrectly, their trust level decreases, 
and their opinions count less in the future. The process is surprisingly fast, and allows for new spam 
to be identifi ed and fi ltered in a matter of minutes. False positive reports (legitimate e-mail incorrect-
ly identifi ed as spam) are quickly remedied and unblocked by the larger community of highly-trusted 
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users, while the trust rating of the original reporter is signifi cantly lowered. 

APPLYING COLLABORATIVE ANTI-SPAM TO ANTI-VIRUS
The previous assumptions regarding the skills that have differentiated virus and spam writers have 
diminished over the past fi ve years.  The number of easily exploitable software packages has 
decreased, so now virus creators transmit more viruses via e-mail and attempt to convince the re-
cipient to open attachments containing malware [4]. Additionally, the use of high level programming 
languages and the subsequent open-source distribution of virus code has enabled neophytes to 
easily modify preexisting virus code—to the point that it evades previous signatures. This is com-
monly seen in the multiple MyDoom and MyTob variants that seem to endlessly propagate across 
our inboxes.

E-mail viruses are often delivered with a spam message, where the goal of the spam is to convince 
the recipient to open the virus. The collaborative community doesn’t actually need to determine if 
the attachment itself is a virus; they only need to recognize that the message that contains the at-
tachment looks like spam. The back-end system that collects all of the spam nominated by the com-
munity can extract the attachment, use an algorithm to determine if it is a piece of computer code, 
and then add it to a table of computer virus signatures.  By examining the bits of spam that come 
before an e-mail virus attachment, the community becomes a large, distributed, anti-virus research 
lab which is capable of quickly identifying new viruses in the wild.  Using collaborative fi ltering for 
combating viruses is not so much a revolutionary idea in theory, as it is a revolutionary change 
in practice. Academic researchers have discussed collaborative defense techniques as a critical 
element in any virus and worm mitigation strategy [5]. The community’s ability to recognize spam 
implicitly allows the community to recognize viruses as well. As long as individuals in the community 
recognize the content as being something that should be fi ltered, it is possible to generate a signa-
ture scheme that can fi ngerprint the content. For example, it is possible to generate a fi ngerprinting 
scheme that is specifi c to executables arriving as an e-mail attachment. If recipients recognize the 
body of an e-mail as spam, then they can submit fi ngerprints for both the e-mail and the executable 
attachment to the Cloudmark back-end. 

What happens if a virus is not preceded by a piece of spam? The honeypot pool, augmented with 
abandoned accounts from large enterprise customers, provides an effective sensor network for the 
detection of new viruses. Additionally, individual community members knowledgeable in anti-virus 
will, as they have in the past, submit samples of new viruses to the back-end.

FINGERPRINTING A VIRUS
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Figure 2: The frequency of virus strains requiring a given number of fi ngerprints to cover the  out-
break.

The vast majority of virus outbreaks only require a single fi ngerprint to cover the virus and its vari-
ants, while a handful of viruses require dozens of fi ngerprints to cover the mutations. 

The goal of fi ngerprint-based, anti-spam schemes is to locate, using either probabilistic or determin-
istic algorithms, the invariant aspects of spam messages and extract these for the fi ngerprint. Pres-
ently, Cloudmark uses seven different fi ngerprinting algorithms that use orthogonal methodologies 
to identify and encode invariant information. The majority of our anti-spam fi ngerprinting schemes 
were designed to work at the byte level, making them content, encoding, and format agnostic. We 
have discovered that these alone provide excellent coverage for x86 executables—as well as script 
and interpreted language viruses.

While non-executable specifi c fi ngerprinting schemes have shown to be extremely effective at track-
ing viruses, Cloudmark developed a specifi c fi ngerprinting scheme for x86 binaries that extracts 
instructions from the code section of the binary while skipping non-critical instructions. This fi nger-
printing scheme disassembles an executable and extracts potentially invariant sections of the code. 
The algorithms can’t produce fi ngerprints with the same multiplicity as human-generated fi nger-
prints; nor can it map to all possible mutations of the same virus. However, the low rate of fi ngerprint 
collision between malicious and innocuous content, referred to as cross-class collision [3], is low 
enough to allow for inclusion in a largely autonomous system. As shown in Figure 2, the majority 
of viruses are covered with a single signature, while a handful of viruses may require more than 10 
signatures to cover all of its variants.

PERFORMANCE OF CLOUDMARK AUTHORITY ANTI-VIRUS
Testing the performance of a collaborative anti-virus solution is not a trivial task, as it depends on 
a steady stream of new viruses for determining its primary performance metric—specifi cally its ob-
served time of coverage of new viruses as compared to other available solutions. We can measure 
the coverage of our approach by examining the amount of time it takes for publicly available prod-
ucts to “label” a binary that the community has identifi ed as being a virus. It is also possible to infer 
the timeliness of our virus fi ngerprints by examining the rate at which the fi ngerprint is found in mail 
and looking for the standard profi le of an epidemic outbreak; if we do not observe an increase in 
global infection attempts, followed by a steady decrease as systems are scrubbed of the contagion, 
then our virus fi ngerprint was issued far too late to be effective.

Figure 3: The fraction of viruses identifi ed by Cloudmark Authority Anti-virus system and not by ClamAV, as a 
function of time.

Signature Timeliness
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As shown in Figure 3, 80% of the new fi ngerprints are novel to the open-source ClamAV product 
at the time of their identifi cation by the Cloudmark community.  Of the 80% which are not initially 
identifi ed by ClamAV, over half are not identifi ed after 2 days.  Similar delays were observed in the 
commercial products we have tested as well.  As the AV industry shifts toward requiring sub-hour 
response for outbreak prevention, a multiple-day gap will no longer be acceptable.

TRACING THE EVOLUTION OF AN OUTBREAK
Recording the number of times each fi ngerprint is seen by the Cloudmark network is an important 
metric for deciding when a fi ngerprint should be “retired”, or aged out of the system.  A benefi t of this 
design is that it is possible to estimate the prevalence of a virus over time by tracking the number 
of times fi ngerprints associated with infection attempts are checked by client-side software. While 
this does not provide a direct measure of the number of infected systems globally, it is suffi cient for 
observing the typical virus lifecycle of infection and remediation.

Figure 4: The normalized rate of infection transmission by CME-24 hosts to Cloudmark users.  The period of 
large-scale infection attempts on the 17th was captured by the system. 

While reports of new variants are received almost daily, the vast majority of virus outbreaks are not 
signifi cant enough to warrant the attention of the media and the security industry as a whole, thus 
limiting our ability to validate our observations. The CME-24 outbreak provided us with our fi rst op-
portunity to track the lifecycle of an openly discussed e-mail worm event.

Figure 4 provides a plot of the normalized infection propagation attempts observed by our users. 
The graph begins when our customers fi rst noticed and submitted a suffi cient number of reports 
to block the virus, specifi cally at 13:08 GMT on January 16th, 2006. The outbreak reached a local 
maximum two days later, as media reports began to surface that discussed a new and potentially 
dangerous worm that had been designed to destroy user’s personal fi les on the 3rd of February.  
Even at this peak, a relatively small number of infection attempts were even recorded; less than 
.25% of Cloudmark Authority Anti-virus users saw virus propagation attempts. Later media reports 
confi rmed that the outbreak had largely been a bust.
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CONCLUSION
Both conventional anti-spam and conventional anti-virus systems are dependent upon the knowl-
edge of a select and expert few, who constantly tune their systems and add new signatures to 
combat evolving threats from mass mailers and virus writers.  Our work over the past fi ve years has 
shown that the collaborative fi ltering paradigm works exceedingly well for both spam and viruses.  
More importantly, the changing economics of the spam environment will necessitate solutions that 
are able to rapidly adapt to new threats; currently the collaborative fi ltering architecture is the only 
one suited to this new landscape.

The collaborative fi ltering architecture is not limited to combating viruses and spam.  Phishing, 
spyware, and a whole host of other security problems that are recognizable by individuals in the 
community can be solved using the same overarching concept of leveraging community consensus 
against these threats.  As the time to remediation for security threats continues to decrease, collab-
orative security frameworks, such as the Cloudmark Network Classifi er, will prove to be one of the 
only means of delivering the security response required on the time scales demanded by customers.
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